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Abstract
Background and objectives: Fuzi, the processed product of daughter roots of Aconitum carmichaelii Debx., is a well-known 
Chinese medicine for the treatment of heart failure (HF) and related cardiac diseases. This study aimed to investigate the mo-
lecular mechanism of the cardioprotective effects of Fuzi water decoction (FWD) and Fuzi water-soluble alkaloids (FWA) on 
the model of HF.

Methods: The HF model of rats was prepared through intravenous injection of propafenone hydrochloride. The normal group, 
model group, FWD-treated groups (1.25 g/kg, 2.5 g/kg, 5 g/kg) and positive group (Shenfu Injection, 3.3 mL/kg) were set 
up. Heart rate, LV+dp/dtmax, and LV-dp/dtmax were recorded at 5 m, 10 m, 20 m, 30 m, and 60 m after drug administration, 
respectively. The contents of atrial natriuretic peptide, brain natriuretic peptide (BNP), angiotensin II, and aldosterone in serum 
were determined 20 m post-administration. An in vitro cardiomyocyte hypertrophy model with HDAC2 overexpression was 
constructed and verified by lentivirus transfection. The experiment included a blank group, FWD-treated groups (3 mg/mL, 
1.5 mg/mL), and FWA-treated groups (4 mg/mL, 2 mg/mL). For transcriptome analysis, the model group, blank group, and 
FWD-treated group (2.5 g/kg) at 20 m and 60 m in vivo, and different dose groups in vitro, were selected to analyze the thera-
peutic mechanisms of FWD and FWA.

Results: All FWD treatment groups showed an increased heart rate, among which the groups with 2.5 g/kg and 5 g/kg FWD 
showed better effects, significantly increasing LV+dp/dtmax and LV-dp/dtmax after 20 m of administration and significantly 
reducing BNP and aldosterone serum levels. In the constructed cardiomyocyte hypertrophy model, HDAC2 expression, atrial 
natriuretic peptide and BNP protein levels, and cell surface area increased. Transcriptome data from both in vivo and in vitro 
showed that FWD and FWA could exert cardioprotective effects through pathways such as the PI3K-Akt signaling pathway, 
NF-κB signaling pathway, and ATP-binding cassette (ABC) transporters, involving key genes such as ITGB1, TLR2, and CD-
KN1A. Fuzi inhibited the hypertrophic gene HDAC2. Additionally, based on weighted gene co-expression network analysis, 
ABC transporters may be an important molecular pathway for FWA in treating HF.

Conclusions: Both FWD and FWA can ameliorate HF by 
regulating apoptosis, proliferation, and anti-fibrosis, with 
ABC transporters potentially being the main pathway for 
the action of FWA.
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Introduction
Heart failure (HF), one of the major diseases that pose serious 
threats to human health, affects about 40 million people world-
wide.1 The pathogenesis of HF is diverse and closely associated 
with dynamic interactions between ventricular remodeling, in-
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creased hemodynamic load, and excessive neurohumoral stimu-
lation.2 While HF has traditionally been thought of as a disease 
of the elderly, new research suggests that the number of younger 
patients being hospitalized for HF is rising at an alarming rate.3 HF 
is treated with a variety of therapies, such as interventions includ-
ing medications, diet, and medical devices, but a large percentage 
of people still struggle to live a healthy life.4 In Western countries, 
the mortality rate for HF patients is even close to 50%.5

HDAC2, a class I member of the HDAC superfamily, is thought 
to be pro-hypertrophic and harmful in HF.6,7 Furthermore, car-
diomyocyte-specific overexpression of HDAC2 leads to severe 
cardiac hypertrophy.6 Cardiac hypertrophy is a pathophysiologi-
cal process in various cardiovascular diseases characterized by in-
creased protein synthesis, increased size, cardiomyocyte fibrosis, 
and increased interstitial components; however, persistent cardiac 
hypertrophy can lead to HF.5

Fuzi, the processed product of daughter roots of Aconitum car-
michaelii Debx., was first recorded in Shennong’s Classic of Mate-
ria Medica. It has shown efficacy in reviving the Yang for resusci-
tation, tonifying fire, helping Yang, as well as dispersing cold and 
relieving pain.8 It is commonly used for the treatment of HF,9,10 
rheumatoid arthritis,11,12 and various types of pain, and is widely 
used in Asian countries. For example, common clinical pairs like 
Fuzi-Zingiberis Rhizoma and Fuzi-Ginseng Radix et Rhizoma 
have shown cardioprotective effects.13,14 And Qiliqiangxin cap-
sules and Shenfu Injection are classic herbal combinations for the 
treatment of HF in China.15,16 In addition, total and water-soluble 
alkaloids of Fuzi have been shown to have cardiotonic effects on 
the failing heart.17

The chemical composition of Fuzi is diverse, with relatively 
thorough research on liposoluble alkaloids. Current studies have 
shown that the Fuzi water-soluble alkaloids (FWA) possess sig-
nificant cardiotonic and anti-inflammatory effects. However, due 
to their low content and limited known components, research on 
their pharmacological mechanisms is still insufficient.18 There-
fore, further research on FWA will help deeply analyze the mo-
lecular mechanism of its cardiotonic effect. This study utilized 
propafenone hydrochloride to construct an animal model of HF 
in vivo, avoiding the severe cardiac toxicity and liver-kidney dys-
function caused by doxorubicin-induced HF.19 Additionally, lenti-
viral vectors were used to construct cardiomyocytes overexpress-
ing HDAC2, and the molecular mechanisms of FWD and FWA in 
treating HF were explored from the perspective of transcriptomics.

Materials and methods

Preparation of FWD and FWA
FWD and FWA were provided by the State Key Laboratory of 
Southwest Chinese Medicine Resources, Chengdu University of 
Traditional Chinese Medicine. One milliliter of FWD correspond-
ed to 1.086 g of raw Fuzi, and the HPLC (high performance liquid 
chromatography) assay method determined that each gram of FWD 
contained 2.918 µg of benzoylaconitine, 1.129 µg of aconitine, and 
0.161 µg of benzoylmesaconine. Mesaconitine, hypaconitine, and 
benzoylhypaconitine were not detected. The yield of FWA from 
Fuzi was 8.4% (W/W), and the detected levels of aconine, hypa-
conine, fuziline, neoline, talatisamine, and songrine were 0.060%, 
0.200%, 0.210%, 0.510%, 0.010%, and 0.004%, respectively.20

Experimental animals and protocols
Sprague-Dawley rats (250 ± 20 g, approval No. SCXK 2017-11) 

of mixed gender were supplied by the Animal Center of Chengdu 
University of Traditional Chinese Medicine (Sichuan, China). The 
animal care adhered to the Guidelines for Animal Experimentation 
of Chengdu University of TCM, and the protocol was approved 
by the Animal Ethics Committee of the institution (ethics number: 
2023020). After one week of adaptive feeding, all rats were ran-
domly divided into six groups (n = 8): blank group (KB), model 
group (M), low-dose group (1.25 g/kg, D), middle-dose group (2.5 
g/kg, Z), high-dose group (5 g/kg, G) of the FWD, and the positive 
group (Y) treated with 3.3 mL/kg of Shenfu Injection. An HF rat 
model was created using 16.5 mg/kg propafenone hydrochloride 
injection into the femoral vein. Distilled water was given to the 
model group, a tail vein injection was administered to the positive 
group, and duodenal administration was given to all dose groups. 
Heart rate, the maximum rate of increase in left ventricular pres-
sure (LV+dp/dtmax), and the maximum rate of decrease in left ven-
tricular pressure (LV-dp/dtmax) were recorded at 5 m, 10 m, 20 m, 
30 m, and 60 m after drug administration. Another batch of rats 
was modeled and administered in the same way, and blood samples 
were collected 20 m after administration. The contents of atrial 
natriuretic peptide (ANP), brain natriuretic peptide (BNP), angio-
tensin II (Ang-II), and aldosterone (ALD) in serum were detected 
using ELISA (enzyme-linked immunosorbent assay) kits.

Construction and validation of a cellular model of cardiac 
hypertrophy
The H9C2 cells and 293T cells were purchased from Chong-
qing Biomedicine Biotechnology Co., Ltd (Chongqing, China). 
All cells were cultured in a medium (90% dulbecco’s modified 
eagle medium, 10% fetal bovine serum, 100 U/mL of penicillin, 
100 mg/mL of streptomycin) and in a humidified atmosphere 
containing 5% CO2 at 37°C. The HDAC2 sequence (Gene ID: 
NM_053447, 1467bp) was obtained through gene synthesis (for-
ward primer: 5′-ATGGCGTACAGTCAAGGAGG-3′; reverse 
primer: 5′-TCAAGGGTTGTTGAGTTGTTC-3′) and constructed 
into the lentiviral vector pLVX-TetOne-Puro-HDAC2 (Chong-
qing Biomedicine Biotechnology Co., Ltd, Chongqing, China). 
The HDAC2 in the lentiviral expression vector was controlled by 
the TRE3GS promoter, followed by the gene for enhanced green 
fluorescent protein (GFP). The resulting vector plasmid, pLVX-
TetOne-Puro-HDAC2, was used to generate recombinant lentiviral 
particles, and the lentiviral vector expressing only GFP was used 
as a negative control (NC). The recombinant lentiviral pLVX-
TetOne-Puro-HDAC2 was cotransfected into 293T cells with plas-
mids pMD2.G and psPAX2, and the packaged recombinant lentivi-
rus was collected by centrifugation. H9C2 cells in the logarithmic 
growth phase were divided into the NC group, control group, and 
overexpressing HDAC2 group. Spread to 12-well plates at 1 × 
105 cells/well, when the cells reached about 2 × 105 cells/well, the 
medium was replaced with fresh medium, and 30 µL of pLVX-
TetOne-Puro lentiviral vector, pLVX-TetOne-Puro-HDAC2, and 5 
µg/mL of polybrene were added to the NC group and overexpres-
sion group, respectively. After 48 h of incubation, the cells were 
replaced with a fresh complete culture medium containing 5 µg/
mL puromycin and screened until the virus fully infected the cells, 
during which the cell status was observed using fluorescence mi-
croscopy. H9C2 cells were transfected for 24 h and 36 h later, and 
the relative expression of HDAC2 in each group was verified using 
quantitative real-time polymerase chain reaction (qRT-PCR). The 
primer sequences are listed in Table 1. Western blot was used to 
detect ANP and BNP content in each group of cellular proteins. 
After transfection, cell images under 100x magnification were cap-
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tured using an inverted microscope. Ten fields of view were ran-
domly selected for each group, and the surface area of the cells in 
each group was measured using Image-Pro Plus 6.0 software and 
averaged. At least 50 cells were analyzed in each group.

Cell culture
Well-grown pLVX-HDAC2 H9C2 cardiomyocytes were spread 
into 6-well plates at 3 × 105 cells/well and divided into blank and 
drug-dosing groups, with three biological replicates in each group. 
The blank group was given 1% serum medium, and drug-dosing 
groups were given Fuzi water decoction - high dose (FWDG) (3 
mg/mL), Fuzi water decoction - low dose (FWDD) (1.5 mg/mL), 
Fuzi water-soluble alkaloids - high dose (FWAG) (4 mg/mL), and 
Fuzi water-soluble alkaloids - low dose (FWAD) (2 mg/mL) re-
spectively.

RNA extraction, next-generation sequencing, and bioinformat-
ics analysis
Two rats from each of the blank control group, model group, and 
FWD medium-dose group were selected and given drugs for 20 m 
and 60 m, respectively. At the end of the treatment, the rats were 
sacrificed, and their hearts were carefully excised and rapidly fro-
zen in liquid nitrogen. In the in vitro cell experiments, the cells 
need to be cultured for 24 h after drug administration. Total RNA 
was extracted using the RaPure total RNA Mini Kit. NanoDrop™ 
and Qubit™ 4.0 fluorometers were used to assess RNA quality. 
The complementary DNA library was constructed and sequenced 
using the Illumina NovaSeq 6000 platform. After filtering out low-
quality data from the raw data, clean reads were obtained, and tran-
script sequences were assembled. The DEGseq software was used 
to analyze the differentially expressed genes between groups, re-
sulting in a set of differentially expressed genes. Based on FPKM 
(fragments per kilobase of exon model per million mapped frag-
ments) expression analysis, the screening criteria were set as FDR 
(False Discovery Rate) <0.01 and FC (fold change) ≥2. Enrich-
ment analysis was performed on the differentially expressed genes 
annotated in the gene ontology (GO) and Kyoto encyclopedia of 
genes and genomes (KEGG) databases, and the weighted gene co-
expression network analysis (WGCNA) toolkit was used to con-
struct co-expression modules.

qRT-PCR
Based on the transcriptome sequencing results, five differentially 

expressed genes were randomly selected, and messenger RNA 
(mRNA) levels were determined using real-time PCR with glyc-
eraldehyde-3-phosphate dehydrogenase as the internal reference 
gene. The PCR primers were designed using Primer5 (Table 2), 
and the experiment was repeated three times for each gene.

Statistical analysis
All data were presented as means ± SD and analyzed with Graph-
Pad Prism 8.2.1 software (San Diego, CA, USA). Comparisons 
of means between groups were analyzed using one-way ANOVA. 
Multiple comparisons were performed using the LSD-t test. Differ-
ences were indicated as statistically significant at p < 0.05.

Results

Protective effect of FWD on rats with HF
To detect the therapeutic effects of FWD on rats with HF, we meas-
ured heart rate, LV+dp/dtmax, and LV-dp/dtmax. The results showed 
that all dose groups of the FWD decoction improved heart rate 
compared with the model group, especially in the Z group (2.5 g/
kg) and G group (5 g/kg) during the period of 10–60 m of adminis-
tration (Fig. 1a). There was a significant difference in the effect of 
each dose group on LV+dp/dtmax from 20–60 m of administration 
(Fig. 1b), and the effect on LV-dp/dtmax was significantly different 
from 10–60 m of administration in all cases (Fig. 1c). Addition-
ally, serum levels of ANP, BNP, ALD, and Ang-II were elevated in 
rats after modeling, while BNP and ALD levels were significantly 
reduced in the Z group and G group of FWD after administration 
for 20 m (Fig. 1d).

Transcriptome sequencing and analysis of rat heart tissue
Based on the above protective effect of the FWD decoction on 
rats with HF, the middle dose group (2.5 g/kg) was selected as the 
experimental group by administering the drug for 20 m and 60 m 
(Z20, Z60). A total of eight samples from the KB group, the M 
group, and the experimental group were included for transcriptome 
analysis.

Overall, 173 genes were up-regulated, and 132 genes were 
down-regulated in the M group compared with the KB group (Fig. 
2a). In the Z20 group, 98 genes were up-regulated and 143 genes 
were down-regulated compared to the M group (Fig. 2b), with a 
significant increase in up-regulated genes in the Z60 group, total-

Table 1.  qRT-PCR primer sequences

Gene Forward (5′-3′) Reverse (5′-3′)

HDAC2 AGACTGCAGTTGCCCTTGAT CAGGCGCATGTGGTAACATT

GAPDH GCAAGTTCAACGGCACAG GCCAGTAGACTCCACGACATA-

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HDAC2, histone deacetylase 2; qRT-PCR, quantitative real-time polymerase chain reaction.

Table 2.  Primer sequences used for quantitative polymerase chain reaction

Gene Forward (5′-3′) Reverse (5′-3′)

ITGA11 GCAGTGACAGTAATGAGCGG TGAAGATGCAGCTGAAGGGA

Rrm2 ACTGTGACTTTGCCTGCCTGATG TCCGTGAGGAACTCCTGCTCTATC

SLC7A5 CATCATCGGTTCGGGCATCT CCGCCTGACTTTGAGATGGT

IL23 ATAAGCACCTGCTGGACTCG GGAACGGAGAAGAGAACGCT

LAMTOR CAGTGCTAGCGTCATCTGGG GCAGCGTGTGTTCACCAAAG
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Fig. 1. FWD improved heart function in propafenone hydrochloride-induced rats. (a) The change of heart rate; (b) The change of LV+dp/dtmax; (c) The 
change of  LV-dp/dtmax; (d) Serum levels of neuro-humoral factors (n = 8, *p < 0.05 vs. the KB group; #p < 0.05 and ##p < 0.01 vs. the M group). ALD, aldoster-
one; Ang-II, angiotensin II; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; D, low-dose group; FWD, Fuzi water decoction; G, high-dose group; 
KB, blank group; LV+dp/dtmax, the maximal rising rate of left ventricle pressure; LV-dp/dtmax, the maximal declining rate of left ventricle pressure; M, model 
group; Y, positive group; Z, middle-dose group.
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ing 291 genes, while 107 genes were down-regulated (Fig. 2c).
To further explore the potential mechanism of FWD in treat-

ing HF, we performed a KEGG metabolic pathway enrichment 
analysis of the differential genes. The results showed that 202 dif-
ferential genes were annotated to the KEGG metabolic pathway 
in the Z60 group compared with the model group after 60 m of 
administration (Fig. 2b). Among these, the tumor necrosis factor 
(TNF) signaling pathway, nuclear factor Kappa-B (NF-κB) sign-
aling pathway, and phosphatidylinositol-3-kinase-Akt (PI3K-Akt) 
signaling pathway were the most important enriched signaling 
pathways. Additionally, GO pathway annotation enrichment anal-
ysis of differential genes revealed that the cellular process was 
the most significantly enriched pathway in biological processes. 
For cellular component enrichment analysis, differential expres-
sion genes (DEGs) were mainly enriched in the “cell part”, “cell” 
and other pathways. Moreover, “binding” was the most obvious 
pathway for molecular function (Fig. 2c).

Cell model validation
The HDAC2 mRNA sequence was successfully cloned into the 
pLVX-TetOne-Puro (Fig. 3a), and the recombinant lentiviral vec-
tor was verified by DNA sequencing, confirming the correct inser-
tion of the cloned HDAC2 sequence. GFP protein expression in 
recombinant lentivirus-transfected target cells was observed using 
fluorescence microscopy, showing green fluorescence in the NC 
and pLVX-HDAC2 groups, but not in the control group (Fig. 3b). 
Compared to the NC group, HDAC2 mRNA expression was sig-
nificantly higher in the pLVX-HDAC2 group, both at 24 h and 36 
h (**p < 0.01, Fig. 3c), with a corresponding increase in HDAC2 

protein (*p < 0.05, Fig. 3d). These results indicate successful ex-
pression and translation of exogenous HDAC2 in H9C2 cells of 
the pLVX-HDAC2 group. Additionally, there was a significant 
increase in cell surface area and expression of ANP and BNP pro-
teins in the pLVX-HDAC2 group cells (*p < 0.05, Fig. 3e, f).21

Cell model transcriptome sequencing analysis
A total of 13 samples from five groups, KB (pLVX-HDAC2), 
FWDD, FWDG, FWAG, and FWAG, were sequenced. Differ-
ential genes were all higher in the high-dose group compared to 
the KB group, and the number of DEGs was higher in FWAG. 
For instance, compared to the KB group, the FWDG group had 
1338 DEGs, with 1284 up-regulated genes and 54 down-regulated 
genes, while the FWAG group had 1980 DEGs, including 1630 up-
regulated genes and 350 down-regulated genes. Among the differ-
entially expressed genes between the FWD and FWA groups, there 
were 269 up-regulated and 207 down-regulated genes (Fig. 4a).

Regarding the HDAC2 gene, we observed down-regulation 
in both the FWD and FWA groups, along with down-regulation 
of genes associated with HDAC2, such as HSP70, FOXO3a, 
mTOR, and CDKN1A (Fig. 4b). We further explored the biologi-
cal pathways involved in cardiac hypertrophy by FWD and FWA 
through KEGG metabolic pathway (Fig. 4c, 4d). Compared to 
the KB group, the up-regulated differential genes in both FWDG 
and FWAG were significantly enriched in the ATP-binding cas-
sette (ABC) transporter and PI3K-Akt signaling pathway, etc., 
while the FWDG group down-regulated the expression of genes 
in the signaling pathways such as the HIF-1 signaling pathway, 
Rap1 signaling pathway, NF-κB signaling pathway, p53 signaling 

Fig. 2. Transcriptomic assay and bioinformatics analysis of rat heart by FWD. (a) Difference expression volcano map between KB-M groups; (b) Difference 
expression volcano map between M-Z20 groups; (c) Difference expression volcano map between M-Z60 groups; (d) Integration map of DEGs; (e) KEGG en-
richment and classification of DEGs in M group and Z60 group; (f) GO classification of DEGs in M group and Z60 group. DEGs, differential expression genes; 
FWD, Fuzi water decoction; GO, gene ontology; KB, blank group; KEGG, Kyoto encyclopedia of genes and genomes; M, model group; Z20, Administer Fuzi 
water decoction-mild dose for 20 minutes; Z60, Administer Fuzi water decoction-mild dose for 60 minutes.
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pathway, Ras signaling pathway, mitogen-activated protein ki-
nase (MAPK) signaling pathway, Wnt signaling pathway, mTOR 
signaling pathway, Calcium signaling pathway, and Janus kinase-
signal transducer and activator of transcription (JAK-STAT) sign-
aling pathway. FWAG down-regulated differential genes were 
significantly enriched in the JAK-STAT signaling pathway, NF-
κB signaling pathway, MAPK signaling pathway, Calcium signal-
ing pathway, and mTOR signaling pathway. Based on the above 
pathways of differential gene enrichment, we identified several 
key differential genes involved in the pathologic development of 
HF (Table 3).

Based on WGCNA, a total of 1820 genes were expressed in 
both the FWD group and FWA group, yielding two co-expression 
modules that showed a positive correlation with the FWD group 

(blue, r = 0.91, p = 0.03) and the FWA group (turquoise, r = 0.75, p 
= 0.1) (Fig. 5a, b). We conducted a KEGG enrichment analysis of 
genes from both modules. In the blue module, genes were signifi-
cantly enriched in the Hippo signaling pathway, PI3K-Akt signal-
ing pathway, Rap1 signaling pathway, cytokine-cytokine receptor 
interactions, and extracellular matrix (ECM)-receptor interactions 
(Fig. 5c). In the turquoise module, genes were significantly en-
riched in ABC transporters, aminoacyl-tRNA biosynthesis, ribo-
somes, and biosynthesis of amino acids (Fig. 5d).

RNA sequencing validation
To validate the results obtained from RNA sequencing analysis, 
we randomly selected five differential genes for qRT-PCR vali-
dation (Fig. 6). The results showed that FWD reduced the expres-

Fig. 3. Validation of indicators of cardiac hypertrophy cell model. (a) Genetic structure of the lentiviral vector. Cartoon representing the genetic structure 
of the HIV-1-derived lentiviral vector. The red pattern represents the inserted target gene, ZsGreen1, Zoanthus sp. Green fluorescent protein; (b) Observa-
tion of green fluorescence in the control group, NC group, and pLVX-HDAC2 group, a is the field of view under bright field and b is the field of view under 
fluorescence; (c) The relative expression of HDAC2 mRNA in NC group and pLVX-HDAC2 group; (d) HDAC2 protein content in the control group, NC group, 
and pLVX-HDAC2 group; (e) Cell surface area of the control group, NC group and pLVX-HDAC2 group; (f) ANP and BNP protein content in control group, NC 
group and pLVX-HDAC2 group. ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; CAP, catabolite gene activator protein; CMV, cytomegalovirus; 
cPPT, central polypurine tract; CTS, Chain termination sequence; HIV-1, human immunodeficiency virus-1; NC, negative control; pLVX-HDAC2, pLVX - histone 
deacetylase 2; RRE, rev response element; WPRE, the woodchuck hepatitis virus post-transcriptional response element.
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sion of ITGA11 and increased the expression of Rrm2, and the 
administration of different doses of FWD and FWA decreased 
the expression of SCL7A5, IL23, and LAMTOR, which was con-

sistent with the trend of results obtained from RNA sequencing 
analysis. The current results suggest that both FWD and FWA 
are effective in alleviating certain indices in ex vivo and in vivo 

Fig. 4. Transcriptomic assay and bioinformatics analysis of cardiac hypertrophy cells by FWD and FWA. (a) Integration map of DEGs; (b) Heat maps of 
HSP70, FOXO3a, mTOR, and CDKN1A; (c) KEGG enrichment and classification of differentially expressed genes in KB group and FWDG group;(d) KEGG 
enrichment and classification of differentially expressed genes in KB group and FWAG group. DEGs, differential expression genes; FWA, Fuzi water-soluble 
alkaloids; FWAD, Fuzi water-soluble alkaloids - low dose; FWAG, Fuzi water-soluble alkaloids - high dose; FWD, Fuzi water decoction; FWDD, Fuzi water de-
coction - low dose; FWDG, Fuzi water decoction - high dose; KB, blank group; KEGG, Kyoto encyclopedia of genes and genomes.

Table 3.  The key differential genes in transcriptome data

Gene name Pathway ID Log2FC Regulated

ITGB1 PI3K-Akt signaling pathway 1.23 up

Abcb7 ABC transporters 1.92 up

Abcc8 ABC transporters 3.69 up

Abcb10 ABC transporters 2.78 up

ITGA8 PI3K-Akt signaling pathway 1.68 up

TLR2 PI3K-Akt signaling pathway −1.08 down

MYC MAPK signaling pathway, PI3K-Akt signaling pathway −1.45 down

SLC7A5 mTOR signaling pathway −1.50 down

PKA Ras signaling pathway −1.13 down

CDKN1A p53 signaling pathway −2.71 down

ABC, ATP-binding cassette; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; PI3K-Akt, phosphatidylinositol-3-kinase-Akt.
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models of HF, with FWA showing greater efficacy.

Discussion
HF is the end stage of many cardiovascular diseases and the leading 
cause of death from heart diseases. In the course of HF, myocardial 
hypertrophy emerges as a major predisposing factor to its develop-
ment.22 Fuzi, a processed product derived from the daughter root 
of Aconitum carmichaeli Debx., finds widespread use in China and 
other Asian countries for treating various ailments, including HF 
and acute myocardial infarction. Here, we successfully constructed 
an in vivo HF model induced by propafenone hydrochloride and an 
in vitro HDAC2 overexpression cardiac hypertrophy model using 
lentiviral transfection techniques. Previous studies from the group 
have demonstrated that different concentrations of FWD and FWA 
can inhibit the increase in left ventricular cardiomyocyte area, and 
reduce collagen volume fraction and cell apoptosis rate, thereby 
improving left ventricular function in rats with HF.20,23 Therefore, 
based on transcriptome analysis, this study identified the main 
pathways involved in HF treatment by FWD and FWA as the 
PI3K-Akt signaling pathway, NF-kappa B signaling pathway, TNF 
signaling pathway, and ABC transporters. By analyzing WGCNA 

we clarified that ABC transporters might be the key pathway of 
Fuzi to improve HF.

At present, the establishment of HF models, both domestically 
and internationally, primarily relies on surgical and chemical drug-
induced methods. For example, myocardial ischemia is simulated 
by increasing cardiac load through physical means such as aortic 
narrowing or coronary artery ligation, and in addition, the animals 
can be intervened by drugs, such as adriamycin, isoproterenol, 
and propafenone hydrochloride.24 In this study, propafenone hy-
drochloride significantly decreased LV+dp/dtmax, LV-dp/dtmax, and 
heart rates in rats, suggesting alterations in myocardial systolic and 
diastolic functions. In addition, ANP, BNP, Ang-II, and ALD, as 
indicators for evaluating HF, were significantly elevated in the rat 
HF model. The FWD-treated group exhibited a tendency to reduce 
all the indexes in the HF rat model, with significant differences 
observed in LV+dp/dtmax, BNP, and ALD levels in the middle and 
high dose groups during the 20–60 m period of drug administra-
tion. Besides the mentioned animal models, HF cell models can 
also be prepared, which are typically induced by neurohumoral 
factors such as catecholamines and angiotensin.25 In recent years, 
cell modeling based on lentiviral transfection has emerged as a 
novel and reliable method to more realistically imitate the disease 

Fig. 5. The co-expression modules analysis. (a) Clustering dendrogram of genes; (b) The relationships of two modules and three traits; (c) KEGG enrichment 
analysis of functional genes in the blue module; (d) KEGG enrichment analysis of functional genes in the turquoise module. KB, blank group; FWA, Fuzi 
water-soluble alkaloids; FWD, Fuzi water decoction; KEGG, Kyoto encyclopedia of genes and genomes.
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process in vitro. This study further utilized lentiviral overexpres-
sion vectors to construct an in vitro model of cardiac hypertrophy 
with stable expression of exogenous HDAC2. The results showed 
an increase in cell surface area and an upregulation of ANP, BNP, 
HDAC2 mRNA, and protein expression levels, indicating the suc-
cessful establishment of an in vitro cardiomyocyte hypertrophy 
model.

HDAC2 belongs to the superfamily of class I HDACs, which 
induce cardiac hypertrophy when specifically overexpressed in 
the heart, and the cell model we constructed similarly exhibited 
hypertrophic features.26 In the treated groups of FWD and FWA, 
we observed down-regulation of HDAC2 and several regulatory 
genes. HSP70 not only binds to HDAC2 and co-induces cardio-
myocyte hypertrophy but also participates in the disease process 
as a co-modulator of HDAC2.27 mTOR is a key factor regulating 
cell growth in both physiological and pathological conditions of 
cardiac hypertrophy. Inhibitors of class I HDACs inhibit mTOR 
expression and ameliorate myocardial hypertrophy.28 In this study, 
both FWD and FWA-treated groups exhibited down-regulation of 
HSP70, HDAC2, and mTOR expression, suggesting improved hy-
pertrophy. It has been demonstrated that HDAC2 is involved in 
the regulation of CDKN1A, and HDAC2 is recruited by FOXO3a 
into the promoter of CDKN1A to regulate P21 expression in cer-
ebellar granule neurons.29,30 CDKN1A plays an important role in 
cell cycle progression, and the overexpression of CDKN1A can 
promote cell senescence, apoptosis, and hypertrophy of H9C2 
cardiomyocytes.31,32 Furthermore, genome-wide association and 

Mendelian randomization analyses suggest CDKN1A involvement 
in HF pathogenesis.33 In this study, CDKN1A expression was sig-
nificantly upregulated in the HF rat model, while it was down-
regulated after FWD administration. Similarly, downregulation 
of CDKN1A expression was also observed in the mast cell model 
treated with FWAG.

HF occurs through various mechanisms such as apoptosis, pro-
liferation, inflammation, and calcium channel changes. Cardiac 
hypertrophy, as an important part of HF development, is regulated 
by cell growth, apoptosis, and mitochondrial energy metabolism. 
Based on transcriptomic analysis of ex vivo and in vivo HF mod-
els, the present study revealed that molecular mechanisms regulat-
ing myocardial hypertrophy and HF are associated with multiple 
pathways. In both in vivo and ex vivo models, differential genes 
were significantly enriched in the PI3K-Akt signaling pathway, 
NF-κB signaling pathway, and MAPK signaling pathway, which 
regulate cell proliferation, apoptosis, and inflammation. In addi-
tion, compared to the FWD-treated group, we observed significant 
enrichment of DEGs in the ABC transporter in the FWA-treated 
group. WGCNA results suggested that FWA ameliorates HF main-
ly through the ABC transporter and aminoacyl-tRNA biosynthetic 
pathways.

Mitochondrial dysfunction is widely acknowledged as a piv-
otal factor in HF progression. ABC transporters, a class of mito-
chondrial membrane transporter proteins, play a key role in the 
regulation of iron metabolism and the maintenance of cellular 
redox homeostasis, whereas iron imbalance and oxidative stress 

Fig. 6. qRT-PCR validation of differentially expressed genes (*p < 0.05, **p < 0.01 vs. the KB group; ##p < 0.01 vs. the M group). FWAD, Fuzi water-soluble 
alkaloids - low dose; FWAG, Fuzi water-soluble alkaloids - high dose; FWDD, Fuzi water decoction - low dose; FWDG, Fuzi water decoction- high dose; KB, 
blank group; M, model group; qRT-PCR, quantitative real-time polymerase chain reaction; Z20, Administer Fuzi water decoction-mild dose for 20 minutes; 
Z60, Administer Fuzi water decoction-mild dose for 60 minutes.
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are important factors in pathological changes such as cardiac hy-
pertrophy and HF. Actually, a change in the source of ATP from 
fatty acid oxidation to glycolysis was observed during HF in 
humans and animal models.34 Seventeen ABC transporters func-
tion in the human heart, including up-regulated differential genes 
ABCB1, ABCB6, ABCB7, ABCB10, and ABCC8 obtained in this 
study. Among them, ABCB7 and ABCB8 are involved in cellular 
iron homeostasis and cytosolic iron-sulfur cluster biogenesis, and 
ABCB10 participates in heme synthesis and iron metabolism; in 
addition, ABCB10 protects cells from oxidative stress.35 Howev-
er, the Fe-S cluster and heme are cofactors in various biochemi-
cal pathways such as the tricarboxylic acid cycle and oxidative 
phosphorylation.36,37 SLC7A5, a glutamine transporter protein, 
is upregulated during cardiac hypertrophy, promoting glutamine 
catabolism and uptake through significant aerobic glycolysis and 
glutamine degradation in hypertrophic cardiomyocytes.38

ECM serves as a crucial substrate in cardiac development; and 
integrins, primary receptors for ECM components, play a pivotal 
role in maintaining cardiovascular homeostasis. ITGB1, a mem-
ber of the integrin family, activates the PI3K-Akt pathway, playing 
a protective role in apoptosis.39 TLR2, involved in various car-
diovascular diseases, not only induces an inflammatory response 
through activation of the NF-κB pathway, but also plays a role in 
myocardial hypertrophy.40–43 TLR2 deficiency significantly ame-
liorates myocardial hypertrophy, fibrosis, and inflammation in rats. 
TLR2 expression was down-regulated after 4 mg/mL FWA admin-
istration in this study, suggesting its benefit in alleviating cellular 
hypertrophy. C-myc, a proto-oncogene, participates in cell growth 
and apoptosis, associated with myocardial hypertrophy where the 
MAPK pathway plays an important role. Inhibiting the MAPK and 
downstream c-myc signaling pathways can exhibit anti-fibrosis 
and anti-myocardial hypertrophy effects in HF.44 Protein kinase 
A (PKA) mediates various signaling pathways during myocardial 
hypertrophy, promoting PKA activation and downstream factor 
NFATc dephosphorylation to induce hypertrophic gene expres-
sion under hypertrophic stimuli. Among the DEGs, the expression 
levels of PKA and NFATc were downregulated. In addition, FWD 
and FWA can inhibit cardiomyocyte apoptosis by down-regulating 
Caspase-3 and up-regulating Bcl-2 expression.

Conclusions
Fuzi exhibits a certain inhibitory effect on the hypertrophic gene 
HDAC2 and improves HF by regulating ABC transporters, the 
PI3K-Akt pathway, the NF-κB signaling pathway, and the cell cy-
cle regulatory gene CDKN1A. FWA is essential for treating HF, 
and the expression of ABC transporter-related genes may regulate 
mitochondrial dysfunction effectively.
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